Python Seminar

October 16, 2017

1 Scientific Programming with Python

http://gdfa.ugr.es/python

1.1 Outline

¢ Introduction to Python

¢ Python for science, where to begin?
¢ Python language

¢ Scientific libraries

1.2 Introduction to Python
1.2.1 What is Python?

Python is a modern, general-purpose, object-oriented, high-level programming language.
General characteristics of Python:

¢ clean and simple language: Easy-to-read and intuitive code, easy-to-learn minimalistic syn-
tax, maintainability scales well with size of projects.
¢ expressive language: Fewer lines of code, fewer bugs, easier to maintain.

Technical details:

¢ dynamically typed: No need to define the type of variables, function arguments or return
types.

¢ automatic memory management: No need to explicitly allocate and deallocate memory for
variables and data arrays. No memory leak bugs.

¢ interpreted: No need to compile the code. The Python interpreter reads and executes the
python code directly.

1.2.2 Advantages:

¢ The main advantage is ease of programming, minimizing the time required to develop,
debug and maintain the code.

¢ Well designed language that encourage many good programming practices:

* Modular and object-oriented programming, good system for packaging and re-use of code.
This often results in more transparent, maintainable and bug-free code.


http://gdfa.ugr.es/python
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb#What-is-Python?
http://www.python.org

1.2.4

Documentation tightly integrated with the code.

A large standard library, and a large collection of add-on packages.

Packaging of programs into standard executables, that work on computers without Python
installed.

Disadvantages:

Since Python is an interpreted and dynamically typed programming language, the execu-
tion of python code can be slow compared to compiled statically typed programming lan-
guages, such as C and Fortran.

Somewhat decentralized, with different environment, packages and documentation
spread out at different places. Can make it harder to get started.

What makes python suitable for scientific computing?

Nature 518, 125-126 (05 February 2015) | doi:10.1038/518125a

1.3
1.3.1

Python has a strong position in scientific computing
- Large community of users, easy to find help and documentation.
Extensive ecosystem of scientific libraries

— NumPy: numerical Python ~ MATLAB matrices and arrays
— SciPy: scientific Python ~ MATLAB toolboxes

- pandas: extends NumPy

— Matplotlib: graphics library

- Sympy: symbolic mathematics library

Scientific (and non-scientific) development environments available

spyder: MATLAB-like environment

Jupyter /IPython notebooks: environment for interactive and exploratory Python
Rodeo: new Python environment for data science

PyCharm: Python enviroment for developers

Great performance due to close integration with time-tested and highly optimized codes
written in C and Fortran

Readily available and suitable for use on high-performance computing clusters

No license costs, no unnecessary use of research budget

Python for science, where to begin?
Why to choose Python 2?

Python 3 is better, but some non-widespread science modules are still not compatible
Differences between Python 2 and 3 are relatively minor

Python 2 is actively supported. For example, Linux distributions and Macs are still using
2.x as default


https://doi.org/10.1038/518125a
http://www.numpy.org
http://www.scipy.org
http://pandas.pydata.org
http://www.matplotlib.org
http://www.sympy.org
https://github.com/spyder-ide/spyder
http://jupyter.org
http://rodeo.yhat.com
https://www.jetbrains.com/pycharm

LU IRATICSS IV T PRCLIECT P

TOOLBOX

PICKUP PYTHON

A powerful programming language with huge community support.

BT JUFIRLT W, PLRELL

at kowa State Unbwersity in Amen i ]
LAy, dhee- L i dcia L prrodeseod o gl
culintel and lisryviems eagiasering Fol ube
werka ot in the grerchbouse, but in Front of
kejbnard Hiwe b & programme, il s ey
part afber job 1100 o Bty profrnar’ — devel
opiag cusriculs toteach the nent generstion
ool grncduies abui the mechandos sl impoe
Lanie of mienlllid prgrunmbng.
Howe does not barve & degres In compuser

wierue P ihev she hne wear o fromal i,

Lnl sontk, Ading Howe ook up 3 post

p

Forvwn spec laline o biol afarmatic and uen
COBUERTHN 10 Tt Tning from gEnomic
ety wets, wned Hore Busd 30 gt 1 4o apoed on
e compuiztional dde. Browsls ecommensis
i kearm Pyihion

s brsomisg ever mom craclal Roearch

€73 wha cam write code In Python can defily
manage their dats scta, and work s2uch mare
ailkchenthy on & wheole houk of neseardh. pelaged
(maks — Eeven bl g Basvabers b0 Cheaning

Agrysg e bl off Cormpuler- ety
langae that scientits might choowe 30 pick
i, Pyl (el reledsed i 199 by Dach o
prurnerees Culdo van Resssn, i an iscremingly
popuatir (and froe) reconsssemdistion. [Eoom
Dokt sl e oL vl corili e res<earo
il i Fich ecodydem of sckeatifoally kxoued
odicine with a hewry emgprhu s oo commarnds

P, Iy and visoaliing dals. Whereay
wome progranming ogasees, moch an MAT

LAH i B, foiia o mrathesnisoel sl il
tical opeesticen, Prihes s preenl perpose
langeage. siong the llnes of C and G-+ (the
Lgeaanges bnwhisch mech commercial software
il opeEilisg flaEn e wEillen ). A ach, 1L
et husps maoee comphicaied, Beown ers, bug o

e ikl i s arrenahde v hilse deyoes




J ANACONDA = i tonie

b Powered by Continuum Analytics

Python interpreter

@ python

Scientific libraries

®rumey &y SciPy  Pandes 1iipg & matplotlib G symey

Development environments

AWy s =]
3 = 2 T Rodeo [
spyder ° :

1.3.2 Scientific-oriented Python Distributions

Provide a Python interpreter with commonly used scientific libraries in science like NumPy,
SciPy, Pandas, matplotlib, etc. already installed. In the past, it was usually painful to build some
of these packages. Also, include development environments with advanced editing, debugging
and introspection features.

e Anaconda

— Cross-platform
- Supports Python 2 and 3
- Most widely adopted

¢ Canopy

— Cross-platform
— Only supports Python 2

¢ Python(x,y)

- Windows-only platform
- Only support Python 2


https://www.continuum.io/downloads
https://store.enthought.com/downloads
http://python-xy.github.io/downloads.html

My Applications

W Learning

Community

sulticimensianal data visushization across
fiex. Explore relationships within and
among related datasets

Sclentific PYthon Development
EmdRanmEnt. Powerful Python IDE with
adeanced editing,

debugging and introspedtion Features

Develogstr Blog

feedback

¥y & 9

g Learning

Community

Dewels

Feedhack

Clone

—
jupyter

.
notebook

Web-based, interactive computing

SANGEARD

ire)

Campanent based data mining Framew
salization and data analyses for

Data vis
Fenice and terctive wo
with a Large toclbax

) Anaconda Navigator -

Mame v T

3

%

& nose 0

s 3

B notebaok o)

B numba 8
=

< a
odo 8l
B openmyxd D
B opemsl o)
B pandss 0
B partd 2
=5

qtconsole
an
Pyt GUA that supports inline figures,

Broper multibee editing with syntax

ork

Beta

Channels  Update index. E kages O,

Build python programs o work with buman Language data

NOSE eXtEnds UNRLESE 0 Make testing easier

Web-based notebook emironment for interactive computs

Humpy sware dynamic python compder uaing |

Shapeshi

ing for your data

A mthon ibrary to readfwrite excel 2010 xdufslsm files

Opensslis an open-source implementation of the ssl and tis protocsls

Powerful daka structures and data anatysis tocls

Appendable key-value byte store

Sign In to Anaconda Clowd

1114

1020




Fquosi_energies = reros{{len{A_vec), 2)}
#f graprob = zevos((len(A_vec), Z)}
m\.«nml« = zeros((lenCepsd_vec), 2D}
= zerasCClenlepsd_vec), 23
ﬁm = zeras{(len(epsdvec), 233

for idx, eps@ in enusmerate(eps@vec):

W - - deltas2.0 * sx - epsdi2.0 * sz
Hl = A28 * sz

# N =N+ N1 ® singm * £} {n the ‘list-string’ formot
= [, 0, ‘sietn * 433
Hargs = {'n': omega}

# find the floguet modes
f_modes,f_energies = floguetmodes(M, T, Margs)

print “Floguet quosienergies[”,ids,”] =%, fenergies

quasi_energies[ids, 1] = fenergies

f_gnd_problidx, @] = expect(sm.dag(} * sm, f_modes[8])
f_gnd_problidgx, 1] = expect(sm.dag(} * sm, fmodes[1])

f_states = floguet_states_t(f_modes, f_energies, @, W, T, Hargs)

wf_gnd_prob[ids, @] = expect{sm.dog(} * sa, f_states[8])
wf_gnd_problids, 1] = expect(sn.dog(} = sm, f_staves[1]}

return quosi_energies, f_gnd_prob, wf_gnd prob

FEEERFRERFE A4 SRS T RS S

s

81 # set up the colcwlotion: o strongly driven two-level systes
B2 ¥ (repected LT tronsitions)

LT

BMoita 02224 gt # it sigmx coutficient
BS apsl 2Pl # qubit sigear coefficient

# relaxotion rote

# dephasing rate

 [s/robiDesktop) sci-python-lectures | = |

!‘p( » qubit lg-um-u fent
relaxation

2 tnttiol stare
wing frequency

- g-m);_p l driving period

o 1) = - deltasZ.@ ¢ sx - epsliZ.0 % sz

> 1

wmnt diss = [[Z], 2], shope = [2, 7], type = cper, (shers = True

-, sm4wws]

[-0.62831853 1.57079633])]
3 | [

Permissions: RN End-of-Bines: LF

Z Jupyter python Seminar tast 15 mintes ag

File  Edit View Inset Cell Kemel  Widgets  Help

e

| Pythonz ©

B+ % @ B 4 % H B C|Makdown i @ Celfooker & @& O

Do
t 115

i

Amplitude
bbbooooos
828888

ot
N
=1
5

[Yifreq)|
O = MW s

rabAbdid

-
BT

'
0 [l Aan 100

- Bl T
o

0.2

Sympy
SymPy is a Python library for symbolic mathematics.

In (471
from sympy import symbols, init printing
init_printing() # pretty printing

%, y = symbols('x y')
eXpr = x + Iy

expr
out[47): x+32y

In (48]:
axpr + 1
Out[48): x+2y+1

SideType Side ¢




BEEEA

1.3.3 Anaconda navigator

1.3.4 Anaconda navigator: installing new packages

1.3.5 spyder

1.3.6 IPython/Jupyter notebooks

1.3.7 Rodeo (need to be installed separately from Anaconda)

1.3.8 PyCharm (need to be installed separately from Anaconda)
Editor Learning curve Users Benefits
spyder pretty short Matlab and R background mature, many features
rodeo pretty short Matlab and R background modern, essential features
[Python/Jupyter smooth teachers interactive
PyCharm moderate developers code quality

1.3.9 Where to look for help?

Official documentation: http://www.scipy.org/docs.html
Usually included in development environments as contextual help:

— spyder: Ctrl+I (Windows) or Cmd+I (Mac)
- PyCharm: F1 (Windows/Mac)
— Rodeo: 7f in the console

Be careful about code you get on the internet!

Dedicated offline documentation browser (Python, LaTeX, C++, Java, Bootstrap, Bash, ...):

— Zeal (Windows/Linux): Free
— Dash (Mac): Commercial
- Velocity (Windows): Commercial

1.4 Python language

Tlctvno Pxibhnta ac A CAalAat11~2bns


http://www.scipy.org/docs.html
https://zealdocs.org
https://kapeli.com/dash
http://velocity.silverlakesoftware.com

eane catalogue.feature - test_project - (~/Projects/test project]

[ vest_peoject ; [ 1es1_project ) [ features ) [ carabogue feature casiguefearure - b WK B B HF T P @ 5 [ oewrmk- | Q
= v D | B 1| D catakguetesure % B cansioguey x o
v Ditest praoject ects/test_peoject) [ ¥ Created by andrey o 18 ! from betave import = -
» Clvenw 2 re: products calalogn.e 2 froa djargo.apps impart apps
| v Elproducts 3 1o provide aeeess to products 1 £
. B migras 4 #s ey User 4
» F Limegrationt 5 T want to browse products catalogue 5 Bgiven(~there are set of (model_nsse}s in database™)
H _init__.p¥ 6 6 def step_implicontest, model_name):
3 B admin.py 7 Scenario: products on homepage 7
i e 8 Given there are set of prodects.Products in database (]
& gk‘; o H | &8 | title | description | price | »
b/ MTRRAPY 0 12 | Preduct 1 | description 2 | 18 | il
B savialivers oy t 12 | Preduct 2 | description3 | 28 | n model = apps.get_model(smcdal_rame. split(}]
B tests.py 2 Whes 10 1o /- 1 for row in context. tatle:
B urls, 3 Thea the page includes “Prodect 13 model.objects. create(titlesrow] 't
ik 4 Rk the g incioses "Prostt 2 u nmnmnn-rwr nu(r.\mlnn 1.
W views.py 5 15 pricesrowl ‘price])
v Eltest_project 6 Sceasrio; prodect detail page 1
v Efeatures 7 Given there is a Product in database 17
Bt 8 | | vitle | deseristica | price | B pwhent”I go to i)
i ] | 1 | Product 1 | descripticn 2 | 18 | 19 ep_inpl{content] s
& _inic_py b Whea T go to /products/Lf n
B catalogue.py n Thea the page includes “Product L n YPR CONTENT: Denave. rUnner.
) canalogue featuse ks Aad the page includes “description I° n -
- 2 And the page includes “104" n pass
B environment.py 2 2
= 5
& sestings.py £ @then( the page includes ~Product 1°')
Burspy o def step_inplicontext):
E
i n e cont
& gitignore £l -
M db.sglited ' assert False
B mansoe oy E
o B e o L
P Ea@ TEI++0 » @ tests done: 3 failed, 3 ignored - Oms.
v i Test Results. Gmal  fuse y/Proj est_project/, FagplLeations PyC \pars/om _runer.py T+
@ 7 ©products catilogue =
* @ products on homepage 4
. * @ product detail page m i ects/test profects venv/Lib/eythond. 5/ site-packages/betave/opdel gy, Line 1456, n run &
1 . xt)
= te-packages/betave/sodel.py", Line 1903, in run B
-
ix Fite - et ; -uc r.rrca'.'r(‘s.-’irui'(d(alpq.-c g, Use 31, in step_ispl =
e sssert
i
* ! Skipped: s1ippes
. Toet uncint§
PRI 257000 mansgrovEretsropc ﬁwmoncunsw B 9: Version Conarsd [ Terminal 3 Bt log
41 P2 UTF-8: Greaster: B 8

I Tests Fasied: 3 passed, 3 falled (moments agol

1.4.2 Strings

In [4]

Python

Note

prefix = 'Py'
word = prefix + 'thon'

# character in position 0
print word[0]

# characters from position 0 (included) to 6 (excluded)

print word[0:6]

¢ 0-based indexing
¢ half-open range indexing: [a, b)

print statement to get outputs
¢ line comments

1.4.3 Lists

In [5]

# empty list
squares = []

# lists might contain items of different types
squares = ['cat', 4, 3.2]




3.2
['cat!'

In [6]

[[’a’,
['a',
b

# negative indices mean count backwards from end of sequence
print squares[-1]

# list concatenation
squares = squares + [81, 'dog']

# list functions
squares.remove(3.2) # remove the first ocurrence

squares.append('horse') # concatenation: same as +

print squares

, 4, 81, 'dog', 'horse']

[lal’ 'b', lcl]
(1, 2, 3]

B o
I |

# 1t 15 possible to nest lists
# (create lists containing other lists)
x = [a, n]

print x
print x[0]
print x[0] [1]

'o', 'c'], [1, 2, 3]]
lbl, 'C']

1.4.4 Simple code: Fibonacci series

In [7]

a, b=20, 1
while a < 10:
print a,
# the sum of two elements defines the next
a, b=>b, a+b

0112358

Note

¢ indentation level of statements is significant
* multiple assignment



1.4.5 if Statements

In [8]: x = -4

if x < O:
x =0
print 'Negative changed to zero'
elif x == O:
print 'Zero'
elif x == 1:
print 'Single'
else:
print 'More'

Negative changed to zero

1.4.6 for Statements

In [9]: words = ['cat', 'window', 'defenestrate']

for w in words:
# len returns the number of items of an object.
print w, len(w)

cat 3
window 6
defenestrate 12

Warning

Please avoid Matlab-like for statements

In [10]: for w in range(len(words)):
print words[w], len(words([w])

cat 3
window 6
defenestrate 12

range(stop)
Built-in function to create lists containing arithmetic progressions.
In [11]: print range(10)

print range(0, 10, 3)
print range(0, -10, -1)

10



[O) 1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9]
[O’ 3’ 6’ 9]
o, -1, -2, -3, -4, -5, -6, -7, -8, -9]

In [12]: for i in range(4):
print 'cat',

cat cat cat cat

In [13]: words = ['cat', 'window', 'defenestrate']

for i, w in enumerate(words):
print i, w

0 cat
1 window
2 defenestrate

1.4.7 Functions

In [14]: def fib(n):
"""Build a Fibonacci series up to n.

Args:
n: upper limtit.

Returns:
4 list with a Fibonacct series up to n.

mnimnn

f=1[] # always initialize the returned value!

a, b=0,1

while a < n:
f.append(a)
# the sum of two elements defines the next
a, b=>b, a+b

return f

# now call the function we just defined:
print £ib(1000)

(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

11



iro/Development
Object inspector
Object fibonacci.fib

0o
i3 Source Editor

Definition : fib(n)

Type : Present in fibonacci module

Build a Fibonacci series up to n.

Args:
n: upper limit.
Returns:
A list with a Fibenacci series up to n.
Object inspector Variable explorer
Q0 IPython console

|
¥ mER Console 1/A

1.4.8 Functions: documentation strings (docstrings)

File explorer

¢ Python documentation strings (docstrings) provide a convenient way of associating docu-

mentation with Python functions and modules.

¢ Docstrings can be written following several styles. We use Google Python Style Guide.
* An object’s docsting is defined by including a string constant as the first statement in the

function’s definition.

¢ Unlike conventional source code comments the docstring should describe what the func-

tion does, not how.
¢ All functions should have a docstring.

* This allows to inspect these comments at run time, for instance as an interactive help system,

or export them as HTML, LaTeX, PDF or other formats.

1.4.9 Functions: default argument values
In [15]: def fib(n, s=0):

"""Byild a Fibonacci series up to n.

Args:
n: upper limtit.
s: lower limit. Default 0.

Returns:
4 list with a Fibonaccti series up to n.

12


https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

file:/fjUsers/pedro/Development/Jupyter/Python%2 0Seminar/docstrin [

L0 =0 W

oo swwsnguone oo oo

fibonacei module

fibonacci.fibln

Build a Fibonacci seriesup ton.

Pardmetros: n - upper limit.

Devuelve:  Alist with a Fibonacci series up to n.
main module

Indices and tables

« [ndice
» indice de Médules
« Pdginade Buisqueda

® = fibonacci.pdf

io  Herramientas fibonacci.pdf  x

@B EQ OO 2 en kK MO e - @ B @
Marcadores X

B Ul w .

P [ s
ﬂ Indices and tables
[ indice de Médulos Python

n indice

1.1 fibonacci module
fibsnacoi, Cibin)
Fiuakd 2 Fitamacei arien p ke
Parksiros f - apper him
Deveclve A Tis wish o Fbossoo sevies sp on.

1.2 main module

13



nnn

f =[] # always initialize the returned value!

a, b=0,1
while a < n:
if a >=s: # lower limit
f .append(a)
# the sum of two elements defines the nezxt
a, b=>b, a+b

return f

print £ib(1000, 15)
print £ib(1000, 0)
print £ib(1000)

(21, 34, 55, 89, 144, 233, 377, 610, 987]
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

1.4.10 Functions: keyword arguments

In [16]: print fib(1000, 15) # positional arguments
print fib(s=15, n=1000) # keyword arguments

(21, 34, 55, 89, 144, 233, 377, 610, 987]
(21, 34, 55, 89, 144, 233, 377, 610, 987]

1.4.11 Functions: returning multiple values

In [17]: def fib(n, s=0):
"""Build a Fibonacci series up to n.

Args:
n: upper limtit.
s: lower limit. Default 0.

Returns:
(f, 1):
¥ " f 7 : list with a Fibonaccti series up to n.
*¥ 1" ": length of Fibonacci series.

f =10 # always initialize return values!

1=0

a, b=0, 1

14



while a < n:
if a >= s: # lower limit
f .append(a)
# the sum of two elements defines the nezxt
a, b=>b, a+b
1 = len(f) # number of elements

return f, 1
a, b = £ib(1000)
print a

print b

c = £ib(1000)
print c

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

17
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 9871, 17)

1.4.12 Functions: importing external functions

In [18]: import fibonacci # without .py eztension

print fibonacci.fib(3)

[0, 17 1, 2]

In [19]: from fibonacci import fib
print £ib(3)

(o, 1, 1, 2]

In [20]: import fibonacci as f # alias
print f.fib(3)

(o, 1, 1, 2]

Recommendation
The best way to import libraries is included in their official help

Some examples:

15



import math

import numpy as np

from scipy import linalg, optimize
import pandas as pd

import matplotlib as mpl

import matplotlib.pyplot as plt
import sympy

1.4.13 Functions: main
fibonacci.py

if __name__ == '__main__

print £ib(1000)
A file fibonacci.py can be used in two ways.

¢ imported in another file: import fibonacci. In this case internal variable __name__ is

fibonacci (the name of the imported module), and print £ib(1000) does not get executed
¢ executed directly: python foo.py. In this case internal variable __name__ have a value
and print £ib(1000) does get executed

_main

- ——

1.4.14 Functions: modules and packages

Modules in Python are simply Python files with the .py extension, which implement a set of
functions. Modules are imported from other modules using the import command.

Packages are simply directories which contain a special file called __init__.py. This file can
be empty, and it indicates that the directory it contains is a Python package, so it can be imported
the same way a module can be imported. Packages contain multiple modules and packages
themselves.

1.4.15 Functions: passing arguments by assignment
Arguments are passed by assignment in Python. Since assignment just creates references to ob-
jects, it depends on the mutability of the arguments if they will be altered or not inside functions.
Common immutable type:

¢ numbers: int, float, complex

¢ immutable sequences: str (strings), tuple
Common mutable type (almost everything else):

¢ mutable sequences: 1ist

* mapping type: dict

¢ classes: ndarray (numpy arrays), Series (pandas one-dimensional array), DataFrame (pandas
2-dimensional array)

The function deepcopy (x) from module copy is available when it is needed to make a copy of
a mutable argument to avoid its modification inside a function:

16



1.4.16 Procedures: functions without a return value

A procedure is a sub-routine that does not return a value, but does have side-effects. This could
be writing to a file, printing to the screen, or modifying the value of its input.

Therefore, in Python, there is not difference between function and procedures, except a proce-
dure does not contain a return statement.

def print_cat():
for i in range(4):
print 'cat',

In [21]: import copy
nums = [1, 2, 3]

def add_zero_w_copy(1l):
1_tmp = copy.deepcopy(l)
1_tmp.append (0)

def add_zero_wo_copy(1):
1.append(0)

add_zero_w_copy (nums)
print nums

add_zero_wo_copy (nums)
print nums

[1, 2, 3]
[1, 2, 3, 0]

1.4.17 Code Style

¢ Style Guide for Python Code: PEPS.

¢ Use only English (ASCII) characters for variables, functions and files. It is possible to
use non-English characters in strings and comments by adding the following line at the
beginning of each file: # -*- coding: utf-8 -*-.

e Name your variables, functions and files consistently: the convention is to use
lower_case_with_underscores.

¢ We all use single-quoted strings to be consistent. Nevertheless, single-quoted strings and
double-quoted strings are the same. PEP does not make a recommendation for this, except
for function documentation where tripe-quote strings should be used.

¢ Constants should be written in ALL_CAPITAL_LETTERS with underscores separating
words

¢ Use spaces around operators and after commas, but not directly inside bracketing constructs:
a=1(1, 2) + g3, 4)

¢ To avoid conflicts with Python keywords, simple add a single trailing_underscore: abs_

17



1.4.18 PEPS8 exceptions:

Long lines It is very conservative and requires limiting lines to 79 characters. We use all lines
to a maximum of 119 characters. This is the default behaviour in PyCharm.

Disable checks in one line Skip validation in one lines by adding following comment:
# nopep8

1.4.19 datetime data type

The datetime module supplies classes for manipulating dates and times. Avoid converting dates
or times to int (datenum or similar).

In [22]: from datetime import datetime, date, time
# Using datetime.combine()
d date (2005, 7, 14)
t = time(12, 30)
dtl = datetime.combine(d, t)

print dti
print dtl.year

2005-07-14 12:30:00
2005

In [23]: from datetime import timedelta
dt2 = dtl + timedelta(hours=5)

print dt2

2005-07-14 17:30:00

timedelta([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[,

weeks]]111111)

All arguments are optional and default to 0. Arguments may be ints, longs, or floats,
and may be positive or negative.

1.4.20 Dboolean data type

boolean values are the two constant objects False and True. In numeric contexts (for example
when used as the argument to an arithmetic operator), they behave like the integers 0 and 1,
respectively.

Nevertheless, other values can also be considered false or true: * the following values are
considered false: 0, '', [1, O, {}, None * all other values are considered true, so objects of many
types are always true

18



1.4.21 Recommended preferences settings for spyder

Plots on a separate window

e IPython console -> Graphics -> Graphics backend -> Automatic.
It is necessary to restart spyder (or at least IPython kernel) to take affect.

Activate PEP8 checking

® Preferences -> Editor -> Code Instropection/Analysis -> Analysis -> Style analysis
(pep8)

Modify the maximum line length:

Step 1

® Preferences -> Editor -> Show vertical line after 119 characters

Step 2

¢ Create a file:

Windows Mac
file name .pep8 pep8
folder user folder (usually ~/.config (usually /Users/<username>)

C:\Users\<username>)

With the following content:

[pep8]
max-line-length = 119

1.4.22 More on list

The list data type has some more methods. Here are all of the methods of list objects:

append (x) Add an item to the end of the list; equivalent to a[len(a):] = [x].

extend (L) Extend the list by appending all the items in the given list; equivalent to a[len(a):]
=L.

insert(i, x) Insert an item at a given position. The first argument is the index of the element
before which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is
equivalent to a.append(x).

remove (x) Remove the first item from the list whose value is x. It is an error if there is no such
item.

pop ([1]) Remove the item at the given position in the list, and return it. If no index is speci-
tied, a.pop() removes and returns the last item in the list. (The square brackets around the i in the
method signature denote that the parameter is optional, not that you should type square brackets
at that position. You will see this notation frequently in the Python Library Reference.)

19



index(x) Return the index in the list of the first item whose value is x. It is an error if there is
no such item.

count(x) Return the number of times x appears in the list.

sort(cmp=None, key=None, reverse=False) Sort the items of the list in place (the arguments
can be used for sort customization, see sorted() for their explanation).

reverse () Reverse the elements of the list, in place.

1.4.23 List comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make

new lists where each element is the result of some operations applied to each member of another

sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.
For example, assume we want to create a list of squares, like:

In [24]: squares = []
for x in range(10):
squares . append (x**2)

print squares

(0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can obtain the same result with:

In [25]: squares = []
squares = [x**2 for x in range(10)]

print squares

(o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

A list comprehension consists of brackets containing an expression followed by a for clause,
then zero or more for or if clauses. The result will be a new list resulting from evaluating the
expression in the context of the for and if clauses which follow it.

1.4.24 Lambda expressions

Small anonymous functions can be created with the lambda keyword. To create a lambda func-
tion first write keyword lambda followed by one of more arguments separated by comma, fol-
lowed by colon sign (:), followed by a single line expression. Note that lambda function cannot
contain more than one expression.

In [26]: print map(lambda x: x**2, range(10))

(0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

map (function, iterable, ...) > Apply function to every item of iterable and return a list
of the results.

20



1.4.25 Dictionaries

A dictionary is a data type which allows to store data just like a 1ist, but instead of using only
numbers to get the data it is possible to use strings or other data types as the index. This is very
useful for storing and organizing data. Note that dictionaries are unordered key-value-pairs.

In [27]: tel = {'jack': 4098, 'sape': 4139}

tel['guido'] = 4127
print tel

print tel['jack']

{'sape': 4139, 'jack': 4098, 'guido': 4127}
4098

Note

OrderedDict is available if you need a ordered dictionary.

In [28]: from collections import OrderedDict

ordered_tel = OrderedDict([('jack', 4098),('sape', 4139),
('guido', 4127)1)
print ordered_tel

OrderedDict ([('jack', 4098), ('sape', 4139), ('guido', 4127)1)

1.4.26 Sets

A set object is an unordered collection of distinct objects.

In [29]: s = set([1, O, 2, 2, 3])

print s

set ([0, 1, 2, 3])

1.4.27 One line if statement

<expressionl> if <condition> else <expression2>

In [30]: age = 15
# Conditions are evaluated from left to rTight
print('kid' if age < 18 else 'adult')

kid

21



Programming languages derived from C usually have following syntax:

<condition> 7 <expressionl> : <expression2>

The creator of Python, Guido van Rossum, rejected it as non-Pythonic, since it is hard to un-
derstand for people not used to C.

1.4.28 Logging

Logging is a means of tracking events that happen when some software runs. The software’s
developer adds logging calls to their code to indicate that certain events have occurred. An event
is described by a descriptive message which can optionally contain variable data (i.e. data that is
potentially different for each occurrence of the event). Events also have an importance which the
developer ascribes to the event; the importance can also be called the level or severity.

The logging is better than printing because:

¢ Itis easy to put a timestamp in each message, which is very handy.

* You can have different levels of urgency for messages, and filter out less urgent messages.

¢ When you want to later find/remove log messages, you will not get them confused for real
print () calls.

¢ If you just print to a log file, it is easy to leave the log function calls in and just ignore them
when you do not need them. You do not have to constantly pull out print () calls.

To print log messages to the screen:

import logging
logging.basicConfig(level=logging.DEBUG,

format='%(asctime)s - %(levelname)s - %(message)s')
logging.info('added %s and %s to get %s' % (x, y, 2))

To write log messages to a file:

import logging
logging.basicConfig(filename='log_filename.txt',

level=logging.DEBUG,

format='%(asctime)s - %(levelname)s - %(message)s')
logging.info('added %s and %s to get %s' % (x, y, 2z))

The different levels of logging, from highest urgency to lowest urgency, are:

logging.critical('This is a critical message.')
logging.error('This is an error message.')
logging.warning('This is a warning message.')
logging.info('This is an informative message.')
logging.debug('This is a low-level debug message.')

The level argument in logging.basicConfig call sets the minimum log level of messages it
actually logs.

22



1.5 Scientific libraries
1.5.1 NumPy

NumPy’s main object is the homogeneous multidimensional array (ndarray). It is a table of
elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In
Numpy dimensions are called axes. The number of axes is rank.

In [31]: import numpy as np

# defining arrays and mairices

Z = np.array([1, 3, 4]1)

A = np.array([[1, 17,
(o, 111

B = np.array([[2, 0],
(3, 411)

In [32]: # selecting elements
print A[O, :]

# elementwise product with * operator!
print A * B

# matriz product
print np.dot(A, B)

[1 1]

[[2 0]
[0 41]
[[5 4]
[3 4]1]

In [33]: from numpy.linalg import solve, inv # linear algebra

a = np.linspace(-np.pi, np.pi, 10)
print a

a = np.array([[1, 2, 3], [3, 4, 6.7]1, [5, 9.0, 5]11)
print a

b = np.array([3, 2, 1])
print solve(a, b) # solve the equation az = b

[-3.14159265 -2.44346095 -1.74532925 -1.04719755 -0.34906585 0.34906585
1.04719755 1.74532925 2.44346095 3.14159265]

[[ 1. 2. 3. ]

[3. 4. 6.7]

[5. 9. 5.1]

23



[-4.83050847 2.13559322 1.18644068]

In [34]: print inv(a)

[[-2.27683616 0.96045198 0.07909605]
[ 1.04519774 -0.56497175 0.1299435 ]
[ 0.39548023 0.05649718 -0.11299435]]

In [35]: print a.transpose()

(1. 3. 5.1
[ 2. 4. 9.1
[ 3. 6.7 5. 11

Warning

The transpose of a 1D array is still a 1D array. If you want to turn your 1D vector into
a 2D array and then transpose it, just slice it with np.newaxis.

In [36]: print b
print b.transpose()
print b[:, np.newaxis]

[3 2 1]
[3 2 1]
(L]
(2]
(111

ndim the number of axes (dimensions) of the array. In the Python world, the number of di-
mensions is referred to as rank.

shape the dimensions of the array. This is a tuple of integers indicating the size of the array in
each dimension. For a matrix with n rows and m columns, shape will be (n, m). The length of the
shape tuple is therefore the rank, or number of dimensions, ndim.

size the total number of elements of the array. This is equal to the product of the elements of
shape.

dtype an object describing the type of the elements in the array. One can create or spec-
ify dtype’s using standard Python types. Additionally NumPy provides types of its own.
numpy.int32, numpy.int16, and numpy.float64 are some examples.

Warning

When operating and manipulating arrays, their data is sometimes copied into a new
array and sometimes not. For example, simple assignments make no copy of array
objects or of their data.

24



Vectorization Numpy arrays enable you to express batch operations on data without writing
any for loops. This is usually called vectorization:

e vectorized code is more concise and easier to read
¢ fewer lines of code generally means fewer bugs
¢ the code more closely resembles standard mathematical notation

But:

sometimes it’s difficult to move away from the for-loop school of thought

1.5.2 Pandas

Pandas is a newer package built on top of NumPy and pandas objects are valid arguments to
most NumPy functions:

In [37]:

fast and efficient Series (1-dimensional) and DataFrame (2-dimensional) heterogeneous
objects for data manipulation with integrated indexing

tools for reading and writing data from different formats: CSV and text files, Microsoft
Excel, SQL databases, HDF5...
intelligent label-based slicing
time series-functionality
integrated handling of missing data

import pandas as pd

# 1gnore the following commands

# just for the slides

pd.set_option("display.max_rows", 10)
pd.set_option("display.max_columns", 5)

simar = pd.read_table('WANA_2006008_Algeciras.txt',

simar

Out [37]:

date

1996-01-14
1996-01-14
1996-01-14
1996-01-14
1996-01-14

1996-12-31
1996-12-31
1996-12-31

03:
06:
09:
12:
15:

09:
12:
15:

00:
00:
00:
00:
00:

00:
00:
00:

00
00
00
00
00

00
00
00

NN

O O O O O

delim_whitespace=True,
parse_dates= {'date' : [0,1,2,3]},
index_col='date', skiprows=70)

mO TmO2 ... VelV DirV
5 2.2 4.5 176.0
5 2.3 4.3 193.0
4 2.3 4.3 193.0
7 2.6 8.7 118.0
9 3.0 8.7 118.0
5 4, 17.1 241.0
0 4.1 ... 15.4 263.0
.0 4.1 ... 15.4 263.0

25



1996-12-31 18:00:00 1.4 3.6 ... 12.4 263.0
1996-12-31 21:00:00 1.4 3.5 ... 12.4 263.0

[2823 rows x 14 columns]

read_table(. . .)

Read general delimited file into DataFrame.

In [38]:

Out [38] :

In [39]:

Out [39] :

delim_whitespace: boolean, default False. Specifies whether or not whitespace
(e.g.”” or”’) will be used as the sep.

parse_dates: boolean or list of ints or names or list of lists or dict, default False
boolean. dict, e.g. {*foo” : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
index_col: int or sequence or False, default None. Column to use as the row
labels of the DataFrame.

skiprows: list-like or integer, default None. Line numbers to skip (0-indexed) or
number of lines to skip (int) at the start of the file

header: int or list of ints, default ‘infer’. Row number(s) to use as the column
names, and the start of the data. Default behavior is as if set to 0 if no names
passed, otherwise None.

simar['HmO'] # selecting a single column

date

1996-01-14 03:00:00
1996-01-14 06:00:00
1996-01-14 09:00:00
1996-01-14 12:00:00
1996-01-14 15:00:00

O O O O O
© NP> OO,

1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4
1996-12-31 21:00:00 1.4

Name: HmO, dtype: float64

simar[['HmO', 'Tp'l] # selecting several columns using a list

HmO Tp
date
1996-01-14 03:00:00 0.5 2.7
1996-01-14 06:00:00 0.5 2.9
1996-01-14 09:00:00 0.4 2.9
1996-01-14 12:00:00 0.7 3.2
1996-01-14 15:00:00 0.9 3.9
1996-12-31 09:00:00 2.5 5.7
1996-12-31 12:00:00 2.0 5.2

26



1996-12-31 15:00:00 2.0 5.2
1996-12-31 18:00:00 1.4 4.7
1996-12-31 21:00:00 1.4 4.7

[2823 rows x 2 columns]

In [40]: simar.iloc[0:3] # selecting rows by position

Out [40] : HmO TmO2 ... VelV  DirV
date e
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 ... 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 ... 4.3 193.0

[3 rows x 14 columns]

In [41]: print simar.loc['1996-01-14 03:00:00'] # selecting rows by label

HmO 0.5
TmO02 2.2
Tp 2.7
DirM 185.0
HmO_V 0.4
HmO_F2 0.0
Tm02_F2 0.0
DirM_F2 0.0
VelV 4.5
DirV 176.0

Name: 1996-01-14 03:00:00, dtype: float64

In [42]: # selecting columns and Tows

print simar.loc['1996-01-14 03:00:00', 'HmO'l # selection by label
print simar.iloc[0, 0] # selection by position
print simar.ix[0, 'HmO'] # mized integer and label based selection

O O O
g o0 ;

In [43]: simar.iloc[:,0]

Out [43]: date
1996-01-14 03:00:00 0.5
1996-01-14 06:00:00 0.5
1996-01-14 09:00:00 0.4

27



1996-01-14 12:00:00 0.7
1996-01-14 15:00:00 0.9
1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4
1996-12-31 21:00:00 1.4

Name: HmO, dtype: float64

In [44]: simar.describe()

Out [44] : HmO Tm02 - VelV DirV
count 2823.000000 2823.000000 c.. 2823.000000 2823.000000
mean 1.206412 3.432164 9.565604 169.971661
std 0.729701 0.880544 3.607439 92.598314
min 0.100000 1.300000 0.000000 0.000000
25% 0.700000 2.800000 6.800000 80.000000
50% 1.000000 3.300000 .. 9.600000 191.000000
75% 1.600000 4.000000 . 12.000000 260.000000
max 5.200000 7.400000 ... 20.700000 360.000000

[8 rows x 14 columns]

In [45]: simar['HmO'].value_counts() # histogram

Out[45]: 0.7 246
0.5 195
0.6 192
1.0 189
0.8 185
3.9 4
4.0 3
5.2 2
3.7 2
4.2 1

Name: HmO, dtype: int64

In [46]: simar.dropna(how='all")

Out [46] : HmO TmO2 ... VelV  DirV
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 4.3 193.0
1996-01-14 12:00:00 0.7 2.6 8.7 118.0
1996-01-14 15:00:00 0.9 3.0 8.7 118.0

28



1996-12-31 09:00:00 2.5 4.4 17.1 241.0
1996-12-31 12:00:00 2.0 4.1 15.4 263.0
1996-12-31 15:00:00 2.0 4.1 15.4 263.0
1996-12-31 18:00:00 1.4 3.6 12.4 263.0
1996-12-31 21:00:00 1.4 3.5 12.4 263.0

[2823 rows x 14 columns]
dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

Return object with labels on given axis omitted where alternately any or all of the data
are missing * how: {"any’, ‘all’}. any: if any NA values are present, drop that label. all:
if all values are NA, drop that label * axis: {0 or ‘index’, 1 or ‘columns’}, or tuple/list
thereof. Pass tuple or list to drop on multiple axes

In [47]: # selecting with complex criteria

simar[(simar['Hm0'] == 0.5) & (simar['VelV'] == 4.5)]

Out [47] : HmO TmO2 ... VelV  DirV
date R
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-08-30 06:00:00 0.5 2.4 ... 4.5 195.0
1996-08-30 09:00:00 0.5 2.4 ... 4.5 195.0
1996-10-23 18:00:00 0.5 2.8 ... 4.5 98.0
1996-10-23 21:00:00 0.5 2.6 ... 4.5 98.0

[5 rows x 14 columns]

In [48]: simar[(simar['Hm0'] == 0.5) | (simar['VelV'] == 4.5)]

Out [48]: HmO TmO2 ... VelV  DirV
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 4.3 193.0
1996-01-19 21:00:00 0.5 3.7 3.6 251.0
1996-01-26 21:00:00 0.5 2.6 5.4 178.0
1996-02-02 12:00:00 0.4 2.2 4.5 243.0
1996-12-07 15:00:00 0.5 2.4 6.1 207.0
1996-12-08 00:00:00 0.5 2.2 6.5 225.0
1996-12-15 00:00:00 0.5 2.4 5.8 258.0
1996-12-16 03:00:00 0.5 2.6 4.0 59.0
1996-12-26 15:00:00 0.5 2.3 6.8 77.0

[205 rows x 14 columns]

Warning

29



It is necessary to use boolean vectors to perform this kind of operations to filter the
data. The operators are: | for or, & for and, and ~ for not. These must be grouped by
using parentheses.

Otherwise, you will get the following error message: ValueError: The truth
value of an array with more than one element is ambiguous. Use a.any() or
a.all().

In recent versions, it is possible to use query to create this kind of selection criteria.

In [49]: simar.query('Hm0 == 0.5 and VelV == 4.5')

Out [49] : HmO Tm02 ... VelV  DirV
date
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-08-30 06:00:00 0.5 2.4 ... 4.5 195.0
1996-08-30 09:00:00 0.5 2.4 ... 4.5 195.0
1996-10-23 18:00:00 0.5 2.8 ... 4.5 98.0
1996-10-23 21:00:00 0.5 2.6 ... 4.5 98.0

1.5.3

[5 rows x 14 columns]

SciPy

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy
extension of Python.

1.5.4

Clustering algorithms (scipy.cluster)

Physical and mathematical constants (scipy.constants)
Fast Fourier Transform routines (scipy.fftpack)
Integration and ordinary differential equation solvers (scipy.integrate)
Interpolation and smoothing splines (scipy.interpolate)
Input and Output (scipy.io)

Linear algebra (scipy.linalg)

N-dimensional image processing (scipy.ndimage)
Orthogonal distance regression (scipy.odr)

Optimization and root-finding routines (scipy.optimize)
Signal processing (scipy.signal)

Sparse matrices and associated routines (scipy.sparse)
Spatial data structures and algorithms (scipy.spatial)
Special functions (scipy.special)

Statistical distributions and functions (scipy.stats)
C/C++ integration (scipy.weave)

matplotlib

matplotlib is a library for making plots in Python. The main component of matplotlib is pylab
which allow the user to create plots with code quite similar to MATLAB figure generating code.
matplotlib has its origins in emulating the MATLABg) graphics commands.

30



In [50]: # <gnore the following command
# just for the slides
Jmatplotlib inline

import matplotlib.pyplot as plt

plt.figure(1l, figsize=(10, 6))
plt.plot(simar.index, simar['HmO'], 'b')
plt.xticks(rotation=30)

plt.title('Simar Algeciras')
plt.ylabel('$Hm_0$"')

plt.savefig('wana.png') # save to file
plt.show() # display on screen

Simar Algeciras

5
4
3
E
2
1
0
ok o oo o A0 R
el o o o2 o o2

In [61]: plt.style.use('ggplot') # pre-defined styles

plt.figure(2, figsize=(10, 6))
plt.plot(simar.index, simar['Hm0'], 'b')
plt.xticks(rotation=30)

plt.title('Simar Algeciras')
plt.ylabel('$Hm_0$"')

plt.show()

31



Simar Algeciras

L

L

Hmy

(=]

In [62]: plt.figure(3, figsize=(10, 6))

plt.subplot(311)

plt.plot(simar.index, simar['Hm0'], 'b')
plt.ylabel('$Hm_0$"')

plt.xticks([])

plt.subplot(312)

plt.plot(simar.index, simar['Tp'], 'c')
plt.ylabel('$T_p$')
plt.xticks(rotation=30)

plt.show()

32



Fourier Transform (full code)

In [53]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Input data
df = pd.read_csv('T130_6_1_2.csv', sep=',',skiprows=2,

header=None, error_bad_lines=False, na_values='"',
skipinitialspace=True)

df

Out [53] : 0 1 e 8 9
0 0.019507 -0.015088 .. NaN 908.778442
1 0.204670 -0.005019 e NaN NaN
2 0.205357 -0.005533 .. NaN NaN
3 0.208304 -0.007504 e NaN NaN
4 0.278389 -0.027514 .. NaN NaN
1669 NaN NaN RN NaN NaN
1670 NaN NaN e NaN NaN
1671 NaN NaN . NaN NaN
1672 NaN NaN e NaN NaN
1673 NaN NaN e NaN NaN

[1674 rows x 10 columns]

In [54]: # One-dimensional discrete Fourier Transform
np.fft.fft(df[1].dropna())
len(y)

B <
I

33



velocity (m/s)

y[range (int(n/2))]

y
t = np.linspace(0, 1, int(n/2)) # Frecuency generation

plt.style.use('ggplot')

# Signal plot

plt.figure(4, figsize=(10, 6))
plt.plot(df[5], df[6], '-c', label='v2')
plt.plot(df[0], df[1], '-.b', label='vl')
plt.xlabel('time (s)', weight='bold')
plt.ylabel('velocity (m/s)', weight='bold')
plt.legend(loc=2)

plt.xticks(rotation=70)

# Signal and spectral amplitude plots
plt.figure(5, figsize=(10, 8))

plt.subplot(511)

plt.plot(df[0], df[1], 'b')
plt.xlabel('Time', weight='bold')
plt.ylabel('Amplitude', weight='bold')

plt.subplot(512)

plt.plot(t, abs(y), 'c')
plt.xlabel('Freq (Hz)', weight='bold')
plt.ylabel('|Y(freq)|', weight='bold')

plt.show()
—_— 2
-l
0.10
0.05 - ‘ i
| I ' : (EASEEE ! l
TN WO O R TR
000 i ‘ ;::_-_I,_.l" IR :“I.l J.:: g P Lt : :
. ii :|=:::" "r:' Z:.. |’ i ||.j‘11 ] il & 1 [t
o (i i
—0.05 - |
=010 -
s 2 $ 8 8

Igg -

time (s)

34

L2g -



[=]
=

[
-
3
=
= 0o
Il'f- ?‘Il'l d;'ﬁ F\:-I H;'] 1 |'I|ﬂ 1 T:'-f'l
=4-
o
=2
>
[:I - ] ] ] ] 1 1
0.0 0.2 0.4 06 0.8 10
Freq (Hz)
1.5.5 Sympy

SymPy is a Python library for symbolic mathematics.

In [65]: from sympy import symbols, init_printing
init_printing() # pretty printing

X, y = symbols('x y')
expr = X + 2%y

expr
Out [55] :
X+ 2y
In [66]: expr + 1
Out [56] :
x+2y+1

Derivative of sin(x)e*

In [57]: from sympy import diff, sin, exp

diff (sin(x)*exp(x), x)

OQut [57]:

e*sin (x) + e* cos (x)

Compute [(e*sin (x) + e cos (x)) dx

35



In [68]: from sympy import integrate, cos
integrate(exp(x) * sin(x) + exp(x) * cos(x), x)
Out [58] :
e* sin (x)
Compute [ _sin (x?)dx
In [69]: from sympy import oo
integrate(sin(x**2), (x, -0o, 00))

Out [59]:

V2yr
2

36



	Scientific Programming with Python
	Outline
	Introduction to Python
	What is Python?
	Advantages:
	Disadvantages:
	What makes python suitable for scientific computing?

	Python for science, where to begin?
	Why to choose Python 2?
	Scientific-oriented Python Distributions
	Anaconda navigator
	Anaconda navigator: installing new packages
	spyder
	IPython/Jupyter notebooks
	Rodeo (need to be installed separately from Anaconda)
	PyCharm (need to be installed separately from Anaconda)
	Where to look for help?

	Python language
	Using Python as a Calculator
	Strings
	Lists
	Simple code: Fibonacci series
	if Statements
	for Statements
	Functions
	Functions: documentation strings (docstrings)
	Functions: default argument values
	Functions: keyword arguments
	Functions: returning multiple values
	Functions: importing external functions
	Functions: main
	Functions: modules and packages
	Functions: passing arguments by assignment
	Procedures: functions without a return value
	Code Style
	PEP8 exceptions:
	datetime data type
	boolean data type
	Recommended preferences settings for spyder
	More on list
	List comprehensions
	Lambda expressions
	Dictionaries
	Sets
	One line if statement
	Logging

	Scientific libraries
	NumPy
	Pandas
	SciPy
	matplotlib
	Sympy



